Search results
Results From The WOW.Com Content Network
However, the Hamiltonian still exists. In the case where the cometric is degenerate at every point q of the configuration space manifold Q, so that the rank of the cometric is less than the dimension of the manifold Q, one has a sub-Riemannian manifold. The Hamiltonian in this case is known as a sub-Riemannian Hamiltonian. Every such ...
An -action on a symplectic manifold (,) is called Hamiltonian if it is symplectic and if there exists a momentum map. A momentum map is often also required to be G {\displaystyle G} -equivariant , where G {\displaystyle G} acts on g ∗ {\displaystyle {\mathfrak {g}}^{*}} via the coadjoint action , and sometimes this requirement is included in ...
In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton , a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics .
Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...
Any smooth function on a symplectic manifold gives rise, by definition, to a Hamiltonian vector field and the set of all such vector fields form a subalgebra of the Lie algebra of symplectic vector fields. The integration of the flow of a symplectic vector field is a symplectomorphism.
The Hamiltonian for a system of discrete particles is a function of their generalized coordinates and conjugate momenta, and possibly, time. For continua and fields, Hamiltonian mechanics is unsuitable but can be extended by considering a large number of point masses, and taking the continuous limit, that is, infinitely many particles forming a continuum or field.
For system as in , the phase space of the unperturbed Hamiltonian is foliated by Lagrangian invariant tori; such systems are referred to as a priori stable. [5] In either case, the Arnold diffusion problem asserts that, for `generic' systems, there exists ρ > 0 {\displaystyle \rho >0} such that for every ϵ > 0 {\displaystyle \epsilon >0 ...
Formulation of Hamiltonian mechanics in terms of the cotangent bundle of a manifold, the configuration space. [6] 1894: Henri Poincaré: Fundamental group of a topological space. The Poincaré conjecture can now be formulated. 1895: Henri Poincaré: Simplicial homology. 1895: Henri Poincaré: Fundamental work Analysis situs, the beginning of ...