Search results
Results From The WOW.Com Content Network
A standard order is often called ascending (corresponding to the fact that the standard order of numbers is ascending, i.e. A to Z, 0 to 9), the reverse order descending (Z to A, 9 to 0). For dates and times, ascending means that earlier values precede later ones e.g. 1/1/2000 will sort ahead of 1/1/2001.
Merge sort. In computer science, a sorting algorithm is an algorithm that puts elements of a list into an order.The most frequently used orders are numerical order and lexicographical order, and either ascending or descending.
As another example, the ordinal data hot, cold, warm would be replaced by 3, 1, 2. In these examples, the ranks are assigned to values in ascending order, although descending ranks can also be used. Ranks are related to the indexed list of order statistics, which consists of the original dataset rearranged into ascending order.
An order of precedence is a sequential hierarchy of importance applied to individuals, [1] groups, or organizations. For individuals, ...
Alphabetical order is a system whereby character strings are placed in order based on the position of the characters in the conventional ordering of an alphabet. It is one of the methods of collation .
An order-of-magnitude estimate of a variable, whose precise value is unknown, is an estimate rounded to the nearest power of ten. For example, an order-of-magnitude estimate for a variable between about 3 billion and 30 billion (such as the human population of the Earth) is 10 billion. To round a number to its nearest order of magnitude, one ...
The longest increasing subsequence problem is closely related to the longest common subsequence problem, which has a quadratic time dynamic programming solution: the longest increasing subsequence of a sequence is the longest common subsequence of and , where is the result of sorting.
In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation ≤ {\displaystyle \leq } on some set X {\displaystyle X} , which satisfies the following for all a , b {\displaystyle a,b} and c {\displaystyle c} in X {\displaystyle X} :