Search results
Results From The WOW.Com Content Network
The rad is a unit of absorbed radiation dose, defined as 1 rad = 0.01 Gy = 0.01 J/kg. [1] It was originally defined in CGS units in 1953 as the dose causing 100 ergs of energy to be absorbed by one gram of matter. The material absorbing the radiation can be human tissue, air, water, or any other substance.
These are worn as badges but can give an indication of instantaneous dose rate and an audible and visual alarm if a dose rate or a total integrated dose is exceeded. A good deal of information can be made immediately available to the wearer of the recorded dose and current dose rate via a local display.
Absorbed dose is a dose quantity which is the measure of the energy deposited in matter by ionizing radiation per unit mass. Absorbed dose is used in the calculation of dose uptake in living tissue in both radiation protection (reduction of harmful effects), and radiology (potential beneficial effects, for example in cancer treatment).
Dose and dose rate are used to measure different quantities [1] in the same way that distance and speed are used to measure different quantities. When considering stochastic radiation effects, only the total dose is relevant; each incremental unit of dose increases the probability that the stochastic effect happens. [ 4 ]
Thus for example, an absorbed dose of 1 Gy by alpha particles will lead to an equivalent dose of 20 Sv, and an equivalent dose of radiation is estimated to have the same biological effect as an equal amount of absorbed dose of gamma rays, which is given a weighting factor of 1.
The background rate for natural radiation varies considerably with location, being as low as 1.5 mSv/a (1.5 mSv per year) in some areas and over 100 mSv/a in others. The highest level of purely natural radiation recorded on the Earth's surface is 90 μGy/h (0.8 Gy/a) on a Brazilian black beach composed of monazite . [ 28 ]
The International Committee for Weights and Measures states: "In order to avoid any risk of confusion between the absorbed dose D and the dose equivalent H, the special names for the respective units should be used, that is, the name gray should be used instead of joules per kilogram for the unit of absorbed dose D and the name sievert instead ...
One gram of rubidium-87 and a radioactivity count rate that, after taking solid angle effects into account, is consistent with a decay rate of 3200 decays per second corresponds to a specific activity of 3.2 × 10 6 Bq/kg. Rubidium atomic mass is 87 g/mol, so one gram is 1/87 of a mole. Plugging in the numbers: