When.com Web Search

  1. Ad

    related to: how to proof prediction electromagnetic

Search results

  1. Results From The WOW.Com Content Network
  2. Precision tests of QED - Wikipedia

    en.wikipedia.org/wiki/Precision_tests_of_QED

    The most precise and specific tests of QED consist of measurements of the electromagnetic fine-structure constant, α, in various physical systems. Checking the consistency of such measurements tests the theory. Tests of a theory are normally carried out by comparing experimental results to theoretical predictions.

  3. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    In the differential form formulation on arbitrary space times, F = ⁠ 1 / 2 ⁠ F αβ ‍ dx α ∧ dx β is the electromagnetic tensor considered as a 2-form, A = A α dx α is the potential 1-form, = is the current 3-form, d is the exterior derivative, and is the Hodge star on forms defined (up to its orientation, i.e. its sign) by the ...

  4. Classical electromagnetism and special relativity - Wikipedia

    en.wikipedia.org/wiki/Classical_electromagnetism...

    The theory of special relativity plays an important role in the modern theory of classical electromagnetism.It gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another.

  5. Covariant formulation of classical electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Covariant_formulation_of...

    The electromagnetic tensor is the combination of the electric and magnetic fields into a covariant antisymmetric tensor whose entries are B-field quantities. [1] = (/ / / / / /) and the result of raising its indices is = = (/ / / / / /), where E is the electric field, B the magnetic field, and c the speed of light.

  6. Reciprocity (electromagnetism) - Wikipedia

    en.wikipedia.org/wiki/Reciprocity_(electromagnetism)

    Forms of the reciprocity theorems are used in many electromagnetic applications, such as analyzing electrical networks and antenna systems. [1] For example, reciprocity implies that antennas work equally well as transmitters or receivers, and specifically that an antenna's radiation and receiving patterns are identical.

  7. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. The most widespread version of Faraday's law states: The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path.

  8. Heinrich Hertz - Wikipedia

    en.wikipedia.org/wiki/Heinrich_Hertz

    Heinrich Rudolf Hertz (/ h ɜːr t s /, HURTS; German: [ˈhaɪnʁɪç hɛʁts]; [1] [2] 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's equations of electromagnetism.

  9. History of Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/History_of_Maxwell's_equations

    The third equation [C] relates the electromagnetic field to electromagnetic force. The rest of the equations [D] to [L] relates the electromagnetic field to material data: the current and charge densities as well as the material medium. Here the twelve Maxwell's equations have been given, respecting the original notations used by Maxwell.