Search results
Results From The WOW.Com Content Network
The DNA is replicated and a membrane wall known as a spore septum begins to form between it and the rest of the cell. The plasma membrane of the cell surrounds this wall and pinches off to leave a double membrane around the DNA, and the developing structure is now known as a forespore. Calcium dipicolinate, the calcium salt of dipicolinic acid ...
The term sporogenesis can also refer to endospore formation in bacteria, which allows the cells to survive unfavorable conditions. Endospores are not reproductive structures and their formation does not require cell fusion or division. Instead, they form through the production of an encapsulating spore coat within the spore-forming cell.
Spores are usually haploid and grow into mature haploid individuals through mitotic division of cells (Urediniospores and Teliospores among rusts are dikaryotic). Dikaryotic cells result from the fusion of two haploid gamete cells. Among sporogenic dikaryotic cells, karyogamy (the fusion of the two haploid nuclei) occurs to produce a diploid cell.
It can be composed of a single cell or can be multicellular. Virtually all plants, fungi, and many other groups form sporangia at some point in their life cycle. Sporangia can produce spores by mitosis, but in land plants and many fungi, sporangia produce genetically distinct haploid spores by meiosis.
The process of endospore formation has profound morphological and physiological consequences: radical post-replicative remodelling of two progeny cells, accompanied eventually by cessation of metabolic activity in one daughter cell (the spore) and death by lysis of the other (the 'mother cell').
The cell wall and septa give stability and rigidity to the hyphae and may prevent loss of cytoplasm in case of local damage to cell wall and cell membrane. The septa commonly have a small opening in the center, which functions as a cytoplasmic connection between adjacent cells, also sometimes allowing cell-to-cell movement of nuclei within a hypha.
When a basidiospore matures, sugars present in the cell wall begin to serve as condensation loci for water vapour in the air. Two separate regions of condensation are critical. At the pointed tip of the spore (the hilum) closest to the supporting basidium, Buller's drop builds up as a large, almost spherical water droplet.
This interaction is an example for biotrophic fusion parasitism, because genetic information is transferred into the host. Many morphological similarities in comparison to zygospore formation are seen, but the mature spore is called a sikyospore and is parasitic. During this process, gall-like structures are produced by the host Absidia glauca ...