When.com Web Search

  1. Ads

    related to: difference between frequency and velocity in science project ideas

Search results

  1. Results From The WOW.Com Content Network
  2. Matter wave - Wikipedia

    en.wikipedia.org/wiki/Matter_wave

    The relationship between frequency (proportional to energy) and wavenumber or velocity (proportional to momentum) is called a dispersion relation. Light waves in a vacuum have linear dispersion relation between frequency: ω = c k {\displaystyle \omega =ck} .

  3. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    In the simple case of a single particle moving with a constant velocity (thereby undergoing uniform linear motion), the action is the momentum of the particle times the distance it moves, added up along its path; equivalently, action is the difference between the particle's kinetic energy and its potential energy, times the duration for which ...

  4. Group velocity - Wikipedia

    en.wikipedia.org/wiki/Group_velocity

    In the context of electromagnetics and optics, the frequency is some function ω(k) of the wave number, so in general, the phase velocity and the group velocity depend on specific medium and frequency. The ratio between the speed of light c and the phase velocity v p is known as the refractive index, n = c / v p = ck / ω.

  5. Rotating reference frame - Wikipedia

    en.wikipedia.org/wiki/Rotating_reference_frame

    It begins with the relation between a particle's coordinates in a rotating frame and its coordinates in an inertial (stationary) frame. Then, by taking time derivatives, formulas are derived that relate the velocity of the particle as seen in the two frames, and the acceleration relative to each frame.

  6. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    If point A has velocity components = (,,) and point B has velocity components = (,,) then the velocity of point A relative to point B is the difference between their components: / = = (,,) Alternatively, this same result could be obtained by computing the time derivative of the relative position vector r B/A .

  7. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    Diagram illustrating the relationship between the wavenumber and the other properties of harmonic waves. In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave, measured in cycles per unit distance (ordinary wavenumber) or radians per unit distance (angular wavenumber).

  8. Wave vector - Wikipedia

    en.wikipedia.org/wiki/Wave_vector

    where the angular frequency is the temporal component, and the wavenumber vector is the spatial component. Alternately, the wavenumber k can be written as the angular frequency ω divided by the phase-velocity v p , or in terms of inverse period T and inverse wavelength λ .

  9. Speed - Wikipedia

    en.wikipedia.org/wiki/Speed

    Speed is the magnitude of velocity (a vector), which indicates additionally the direction of motion. Speed has the dimensions of distance divided by time. The SI unit of speed is the metre per second (m/s), but the most common unit of speed in everyday usage is the kilometre per hour (km/h) or, in the US and the UK, miles per hour (mph).