Ad
related to: legendre polynomials formula
Search results
Results From The WOW.Com Content Network
The first six Legendre polynomials. In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as ...
The general Legendre equation reads ″ ′ + [(+)] =, where the numbers λ and μ may be complex, and are called the degree and order of the relevant function, respectively. . The polynomial solutions when λ is an integer (denoted n), and μ = 0 are the Legendre polynomials P n; and when λ is an integer (denoted n), and μ = m is also an integer with | m | < n are the associated Legendre ...
In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation () + [(+)] =,or equivalently [() ()] + [(+)] =,where the indices ℓ and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively.
In mathematics, Rodrigues' formula (formerly called the Ivory–Jacobi formula) generates the Legendre polynomials. It was independently introduced by Olinde Rodrigues ( 1816 ), Sir James Ivory ( 1824 ) and Carl Gustav Jacobi ( 1827 ).
Legendre's formula can be used to prove Kummer's theorem. As one special case, it can be used to prove that if n is a positive integer then 4 divides ( 2 n n ) {\displaystyle {\binom {2n}{n}}} if and only if n is not a power of 2.
Classical orthogonal polynomials appeared in the early 19th century in the works of Adrien-Marie Legendre, who introduced the Legendre polynomials. In the late 19th century, the study of continued fractions to solve the moment problem by P. L. Chebyshev and then A.A. Markov and T.J. Stieltjes led to the general notion of orthogonal polynomials.
For integrating f over [,] with Gauss–Legendre quadrature, the associated orthogonal polynomials are Legendre polynomials, denoted by P n (x). With the n-th polynomial normalized so that P n (1) = 1, the i-th Gauss node, x i, is the i-th root of P n and the weights are given by the formula [5]
In mathematics, the Mehler–Heine formula introduced by Gustav Ferdinand Mehler [1] and Eduard Heine [2] describes the asymptotic behavior of the Legendre polynomials as the index tends to infinity, near the edges of the support of the weight.