Search results
Results From The WOW.Com Content Network
The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.
The structured support-vector machine is a machine learning algorithm that generalizes the Support-Vector Machine (SVM) classifier. Whereas the SVM classifier supports binary classification , multiclass classification and regression , the structured SVM allows training of a classifier for general structured output labels .
Structured support vector machine This page was last edited on 29 July 2022, at 03:27 (UTC). Text is available under the Creative Commons Attribution ...
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]
Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis.
Support vector machine, a machine learning algorithm; Stroboscopic effect visibility measure (SVM), a measure for assessing a type of temporal light artefacts; Other
SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of the hinge-loss function and L2 norm of the learned weights. This strategy avoids overfitting via Tikhonov regularization and in the L2 norm sense and also corresponds to minimizing the bias and variance of our estimator ...
Vladimir Naumovich Vapnik (Russian: Владимир Наумович Вапник; born 6 December 1936) is a computer scientist, researcher, and academic.He is one of the main developers of the Vapnik–Chervonenkis theory of statistical learning [1] and the co-inventor of the support-vector machine method and support-vector clustering algorithms.