When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum cardinality matching - Wikipedia

    en.wikipedia.org/wiki/Maximum_cardinality_matching

    Maximum cardinality matching is a fundamental problem in graph theory. [1] We are given a graph G, and the goal is to find a matching containing as many edges as possible; that is, a maximum cardinality subset of the edges such that each vertex is adjacent to at most one edge of the subset. As each edge will cover exactly two vertices, this ...

  3. Matching (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Matching_(graph_theory)

    The following figure shows examples of maximal matchings (red) in three graphs. A maximum matching (also known as maximum-cardinality matching [2]) is a matching that contains the largest possible number of edges. There may be many maximum matchings. The matching number of a graph G is the size of a maximum matching. Every maximum matching is ...

  4. Maximally matchable edge - Wikipedia

    en.wikipedia.org/wiki/Maximally_matchable_edge

    Let G = (V,E) be a graph, where V are the vertices and E are the edges. A matching in G is a subset M of E, such that each vertex in V is adjacent to at most a single edge in M. A maximum matching is a matching of maximum cardinality. An edge e in E is called maximally matchable (or allowed) if there exists a maximum matching M that contains e.

  5. Matching polytope - Wikipedia

    en.wikipedia.org/wiki/Matching_polytope

    The perfect matching polytope of a graph G, denoted PMP(G), is a polytope whose corners are the incidence vectors of the integral perfect matchings in G. [1]: 274 Obviously, PMP(G) is contained in MP(G); In fact, PMP(G) is the face of MP(G) determined by the equality:

  6. Assignment problem - Wikipedia

    en.wikipedia.org/wiki/Assignment_problem

    There is also a constant s which is at most the cardinality of a maximum matching in the graph. The goal is to find a minimum-cost matching of size exactly s. The most common case is the case in which the graph admits a one-sided-perfect matching (i.e., a matching of size r), and s=r. Unbalanced assignment can be reduced to a balanced assignment.

  7. Minimum-cost flow problem - Wikipedia

    en.wikipedia.org/wiki/Minimum-cost_flow_problem

    Given a bipartite graph G = (A ∪ B, E), the goal is to find the maximum cardinality matching in G that has minimum cost. Let w: E → R be a weight function on the edges of E. The minimum weight bipartite matching problem or assignment problem is to find a perfect matching M ⊆ E whose total weight is minimized. The idea is to reduce this ...

  8. Perfect matching - Wikipedia

    en.wikipedia.org/wiki/Perfect_matching

    Every perfect matching is a maximum-cardinality matching, but the opposite is not true. For example, consider the following graphs: [1] In graph (b) there is a perfect matching (of size 3) since all 6 vertices are matched; in graphs (a) and (c) there is a maximum-cardinality matching (of size 2) which is not perfect, since some vertices are ...

  9. Kőnig's theorem (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Kőnig's_theorem_(graph...

    An example of a bipartite graph, with a maximum matching (blue) and minimum vertex cover (red) both of size six. In the mathematical area of graph theory, Kőnig's theorem, proved by Dénes Kőnig (), describes an equivalence between the maximum matching problem and the minimum vertex cover problem in bipartite graphs.