Search results
Results From The WOW.Com Content Network
The formula was defined by Jeff Tupper and appears as an example in Tupper's 2001 SIGGRAPH paper on reliable two-dimensional computer graphing algorithms. [1] This paper discusses methods related to the GrafEq formula-graphing program developed by Tupper. [2] Although the formula is called "self-referential", Tupper did not name it as such. [3]
The "chart" actually consists of a pair of charts: one, the individuals chart, displays the individual measured values; the other, the moving range chart, displays the difference from one point to the next.
What links here; Related changes; Upload file; Special pages; Permanent link; Page information
In graph theory, Graph equations are equations in which the unknowns are graphs. One of the central questions of graph theory concerns the notion of isomorphism. We ask: When are two graphs the same? (i.e., graph isomorphism) The graphs in question may be expressed differently in terms of graph equations. [1]
The precise uses and capabilities of these systems differ greatly from one system to another, yet their purpose remains the same: manipulation of symbolic equations. Computer algebra system often include facilities for graphing equations and provide a programming language for the users' own procedures.
A ternary plot, ternary graph, triangle plot, simplex plot, or Gibbs triangle is a barycentric plot on three variables which sum to a constant. [1] It graphically depicts the ratios of the three variables as positions in an equilateral triangle .
The linear–log type of a semi-log graph, defined by a logarithmic scale on the x axis, and a linear scale on the y axis. Plotted lines are: y = 10 x (red), y = x (green), y = log(x) (blue). In science and engineering, a semi-log plot/graph or semi-logarithmic plot/graph has one axis on a logarithmic scale, the other on a linear scale.
A correct evaluation order is a numbering : of the objects that form the nodes of the dependency graph so that the following equation holds: () < (,) with ,. This means, if the numbering orders two elements a {\displaystyle a} and b {\displaystyle b} so that a {\displaystyle a} will be evaluated before b {\displaystyle b} , then a ...