Search results
Results From The WOW.Com Content Network
square root: four different dependencies were run in parallel on four 250 MHZ SGI Origin 2000 processors at CWI; three of them found the factors of RSA-140 after 14.2, 19.0 and 19.0 CPU-hours eleven weeks (including four weeks for polynomial selection, one month for sieving, one week for data filtering and matrix construction, five days for the ...
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Digitalized Signatures and Public-Key Functions as Intractable as Factorization (in PDF). MIT Laboratory for Computer Science, January 1979. Scott Lindhurst, An analysis of Shank's algorithm for computing square roots in finite fields. in R Gupta and K S Williams, Proc 5th Conf Can Nr Theo Assoc, 1999, vol 19 CRM Proc & Lec Notes, AMS, Aug 1999.
More specifically, the RSA problem is to efficiently compute P given an RSA public key (N, e) and a ciphertext C ≡ P e (mod N). The structure of the RSA public key requires that N be a large semiprime (i.e., a product of two large prime numbers ), that 2 < e < N , that e be coprime to φ ( N ), and that 0 ≤ C < N .
RSA Laboratories stated: "Now that the industry has a considerably more advanced understanding of the cryptanalytic strength of common symmetric-key and public-key algorithms, these challenges are no longer active." [6] When the challenge ended in 2007, only RSA-576 and RSA-640 had been factored from the 2001 challenge numbers. [7]
In the RSA cryptosystem, Bob might tend to use a small value of d, rather than a large random number to improve the RSA decryption performance. However, Wiener's attack shows that choosing a small value for d will result in an insecure system in which an attacker can recover all secret information, i.e., break the RSA system.
The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.
Download as PDF; Printable version; In other projects ... (for square root) ... (deriving from use of colon to denote fractions, dating back to 1633) ...