Search results
Results From The WOW.Com Content Network
[1] [2] Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. [ 3 ] [ 4 ] E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and ...
Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is ...
In other words, it is the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. [2] [3] The integers k of this form are sometimes referred to as totatives of n. For example, the totatives of n = 9 are the six numbers 1, 2, 4, 5, 7 and 8.
8 bits Byte, octet, minimum size of char in C99( see limits.h CHAR_BIT) −128 to +127 0 to 255 2 bytes 16 bits x86 word, minimum size of short and int in C −32,768 to +32,767 0 to 65,535 4 bytes 32 bits x86 double word, minimum size of long in C, actual size of int for most modern C compilers, [8] pointer for IA-32-compatible processors
For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4).
The JScience library has a Complex number class. The JAS library allows the use of complex numbers. Netlib has a complex number class for Java. javafastcomplex also adds complex number support for Java; jcomplexnumber is a project on implementation of complex number in Java. JLinAlg includes complex numbers with arbitrary precision.
The first 15 superior highly composite numbers, 2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800 (sequence A002201 in the OEIS) are also the first 15 colossally abundant numbers, which meet a similar condition based on the sum-of-divisors function rather than the number of divisors. Neither ...
So if it is unknown whether a number n is prime or composite, we can pick a random number a, calculate the Jacobi symbol ( a / n ) and compare it with Euler's formula; if they differ modulo n, then n is composite; if they have the same residue modulo n for many different values of a, then n is "probably prime".