Ads
related to: geometry faces edges vertices worksheets 5th
Search results
Results From The WOW.Com Content Network
where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.
In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.
In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive—there is an isometry mapping any vertex onto any other. It follows that all vertices are congruent . Uniform polyhedra may be regular (if also face- and edge-transitive ), quasi-regular (if also edge-transitive but not face-transitive), or semi-regular ...
where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.
In five-dimensional geometry, a 5-cube is a name for a five-dimensional hypercube with 32 vertices, 80 edges, 80 square faces, 40 cubic cells, and 10 tesseract 4-faces. It is represented by Schläfli symbol {4,3,3,3} or {4,3 3 }, constructed as 3 tesseracts, {4,3,3}, around each cubic ridge .
Number of vertices V, edges E, Faces F and number of faces by type. Euler characteristic χ = V - E + F; The vertex figures are on the left, followed by the Point groups in three dimensions#The seven remaining point groups, either tetrahedral T d, octahedral O h or icosahedral I h.