When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bulk modulus - Wikipedia

    en.wikipedia.org/wiki/Bulk_modulus

    The bulk modulus (or or ) of a substance is a measure of the resistance of a substance to bulk compression. It is defined as the ratio of the infinitesimal pressure increase to the resulting relative decrease of the volume .

  3. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    The bulk modulus (K) describes volumetric elasticity, or the tendency of an object to deform in all directions when uniformly loaded in all directions; it is defined as volumetric stress over volumetric strain, and is the inverse of compressibility. The bulk modulus is an extension of Young's modulus to three dimensions.

  4. Elastic properties of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Elastic_properties_of_the...

    Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress. They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength. Material properties are most often characterized by a set of numerical parameters called moduli.

  5. Elasticity tensor - Wikipedia

    en.wikipedia.org/wiki/Elasticity_tensor

    This fact follows from the symmetry of the stress and strain tensors, together with the requirement that the stress derives from an elastic energy potential. For isotropic materials, the elasticity tensor has just two independent components, which can be chosen to be the bulk modulus and shear modulus. [3]

  6. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    Young's modulus and shear modulus are only for solids, whereas the bulk modulus is for solids, liquids, and gases. The elasticity of materials is described by a stress–strain curve, which shows the relation between stress (the average restorative internal force per unit area) and strain (the relative deformation). [2]

  7. Lamé parameters - Wikipedia

    en.wikipedia.org/wiki/Lamé_parameters

    The two parameters together constitute a parameterization of the elastic moduli for homogeneous isotropic media, popular in mathematical literature, and are thus related to the other elastic moduli; for instance, the bulk modulus can be expressed as K = λ + ⁠ 2 / 3 ⁠ μ.

  8. Poisson's ratio - Wikipedia

    en.wikipedia.org/wiki/Poisson's_ratio

    The Poisson's ratio of a stable, isotropic, linear elastic material must be between −1.0 and +0.5 because of the requirement for Young's modulus, the shear modulus and bulk modulus to have positive values. [3] Most materials have Poisson's ratio values ranging between 0.0 and 0.5.

  9. Murnaghan equation of state - Wikipedia

    en.wikipedia.org/wiki/Murnaghan_equation_of_state

    These coefficients obtained, and knowing the value of the volume to ambient conditions, then we are in principle able to calculate the volume, density and bulk modulus for any pressure. The data set is mostly a series of volume measurements for different values of applied pressure, obtained mostly by X-ray diffraction.