Ads
related to: number of partitions in math test questions
Search results
Results From The WOW.Com Content Network
and the number of partitions of n in which all parts are 1, 2 or 3 (or, equivalently, the number of partitions of n into at most three parts) is the nearest integer to (n + 3) 2 / 12. [ 14 ] Partitions in a rectangle and Gaussian binomial coefficients
The total number of partitions of an n-element set is the Bell number B n. The first several Bell numbers are B 0 = 1, B 1 = 1, B 2 = 2, B 3 = 5, B 4 = 15, B 5 = 52, and B 6 = 203 (sequence A000110 in the OEIS ).
The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]
Generally, a partition is a division of a whole into non-overlapping parts. Among the kinds of partitions considered in mathematics are partition of a set or an ordered partition of a set, partition of a graph, partition of an integer, partition of an interval, partition of unity, partition of a matrix; see block matrix, and
If there is a remainder in solving a partition problem, the parts will end up with unequal sizes. For example, if 52 cards are dealt out to 5 players, then 3 of the players will receive 10 cards each, and 2 of the players will receive 11 cards each, since 52 5 = 10 + 2 5 {\textstyle {\frac {52}{5}}=10+{\frac {2}{5}}} .
In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.
In number theory, Glaisher's theorem is an identity useful to the study of integer partitions.Proved in 1883 [1] by James Whitbread Lee Glaisher, it states that the number of partitions of an integer into parts not divisible by is equal to the number of partitions in which no part is repeated or more times.
The Stirling number {} is the number of ways to partition a set of cardinality n into exactly k nonempty subsets. Thus, in the equation relating the Bell numbers to the Stirling numbers, each partition counted on the left hand side of the equation is counted in exactly one of the terms of the sum on the right hand side, the one for which k is ...