Ads
related to: number of partitions in math test problems
Search results
Results From The WOW.Com Content Network
This is a general property. For each positive number, the number of partitions with odd parts equals the number of partitions with distinct parts, denoted by q(n). [8] [9] This result was proved by Leonhard Euler in 1748 [10] and later was generalized as Glaisher's theorem.
The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]
In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.
5 Analytic number theory: additive problems. ... Partition function (number theory) ... Fermat primality test. Pseudoprime; Carmichael number;
If there is a remainder in solving a partition problem, the parts will end up with unequal sizes. For example, if 52 cards are dealt out to 5 players, then 3 of the players will receive 10 cards each, and 2 of the players will receive 11 cards each, since 52 5 = 10 + 2 5 {\textstyle {\frac {52}{5}}=10+{\frac {2}{5}}} .
Among the kinds of partitions considered in mathematics are partition of a set or an ordered partition of a set, partition of a graph, partition of an integer, partition of an interval, partition of unity, partition of a matrix; see block matrix, and; partition of the sum of squares in statistics problems, especially in the analysis of variance,
Two of the problems are trivial (the number of equivalence classes is 0 or 1), five problems have an answer in terms of a multiplicative formula of n and x, and the remaining five problems have an answer in terms of combinatorial functions (Stirling numbers and the partition function for a given number of parts).
In number theory, Glaisher's theorem is an identity useful to the study of integer partitions.Proved in 1883 [1] by James Whitbread Lee Glaisher, it states that the number of partitions of an integer into parts not divisible by is equal to the number of partitions in which no part is repeated or more times.