Search results
Results From The WOW.Com Content Network
Animation demonstrating the smallest Pythagorean triple, 3 2 + 4 2 = 5 2. A Pythagorean triple consists of three positive integers a, b, and c, such that a 2 + b 2 = c 2.Such a triple is commonly written (a, b, c), a well-known example is (3, 4, 5).
If any of the above matrices, say A, is applied to a triple (a, b, c) T having the Pythagorean property a 2 + b 2 = c 2 to obtain a new triple (d, e, f) T = A(a, b, c) T, this new triple is also Pythagorean.
With a the shorter and b the longer legs of a triangle and c its hypotenuse, the Pythagoras family of triplets is defined by c − b = 1, the Plato family by c − b = 2, and the Fermat family by | a − b | = 1. The Stifel sequence produces all primitive triplets of the Pythagoras family, and the Ozanam sequence produces all primitive triples ...
Its three integer sides are known as a Pythagorean triple or Pythagorean triplet or Pythagorean triad. [9] All Pythagorean triples ( a , b , c ) {\displaystyle (a,b,c)} with hypotenuse c {\displaystyle c} which are primitive (the sides having no common factor ) can be generated by
Pythagorean Triangles is a book on right triangles, the Pythagorean theorem, and Pythagorean triples.It was originally written in the Polish language by Wacław Sierpiński (titled Trójkąty pitagorejskie), and published in Warsaw in 1954.
This is now known as the Pythagorean theorem, and a triple of numbers that meets this condition is called a Pythagorean triple; both are named after the ancient Greek Pythagoras. Examples include (3, 4, 5) and (5, 12, 13).
If a right triangle has integer side lengths a, b, c (necessarily satisfying the Pythagorean theorem a 2 + b 2 = c 2), then (a,b,c) is known as a Pythagorean triple. As Martin (1875) describes, the Pell numbers can be used to form Pythagorean triples in which a and b are one unit apart, corresponding to right triangles that are nearly isosceles.
The Boolean Pythagorean triples problem is a problem from Ramsey theory about whether the positive integers can be colored red and blue so that no Pythagorean triples consist of all red or all blue members.