When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state space or phase space is the geometric space in which the axes are the state variables. The system state can be represented as a vector , the state vector . If the dynamical system is linear, time-invariant, and finite-dimensional, then the differential and algebraic equations may be written in matrix form.

  3. Subspace identification method - Wikipedia

    en.wikipedia.org/wiki/Subspace_identification_method

    In mathematics, specifically in control theory, subspace identification (SID) aims at identifying linear time invariant (LTI) state space models from input-output data. SID does not require that the user parametrizes the system matrices before solving a parametric optimization problem and, as a consequence, SID methods do not suffer from problems related to local minima that often lead to ...

  4. Nonlinear system identification - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_system...

    A model class that is general enough to capture this situation is the class of stochastic nonlinear state-space models. A state-space model is usually obtained using first principle laws, [16] such as mechanical, electrical, or thermodynamic physical laws, and the parameters to be identified usually have some physical meaning or significance. A ...

  5. State space (computer science) - Wikipedia

    en.wikipedia.org/wiki/State_space_(computer_science)

    Vacuum World, a shortest path problem with a finite state space. In computer science, a state space is a discrete space representing the set of all possible configurations of a "system". [1] It is a useful abstraction for reasoning about the behavior of a given system and is widely used in the fields of artificial intelligence and game theory.

  6. State variable - Wikipedia

    en.wikipedia.org/wiki/State_variable

    In control engineering and other areas of science and engineering, state variables are used to represent the states of a general system. The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the ...

  7. State-transition matrix - Wikipedia

    en.wikipedia.org/wiki/State-transition_matrix

    The state-transition matrix is used to find the solution to a general state-space representation of a linear system in the following form ˙ = () + (), =, where () are the states of the system, () is the input signal, () and () are matrix functions, and is the initial condition at .

  8. Simplified perturbations models - Wikipedia

    en.wikipedia.org/.../Simplified_perturbations_models

    Simplified Deep Space Perturbations (SDP) models apply to objects with an orbital period greater than 225 minutes, which corresponds to an altitude of 5,877.5 km, assuming a circular orbit. [ 3 ] The SGP4 and SDP4 models were published along with sample code in FORTRAN IV in 1988 with refinements over the original model to handle the larger ...

  9. State (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/State_(functional_analysis)

    Thus the set of all states of M with the weak-* topology forms a compact Hausdorff space, known as the state space of M. In the C*-algebraic formulation of quantum mechanics, states in this previous sense correspond to physical states, i.e. mappings from physical observables (self-adjoint elements of the C*-algebra) to their expected ...