Search results
Results From The WOW.Com Content Network
That is, the resulting spin operators for higher-spin systems in three spatial dimensions can be calculated for arbitrarily large s using this spin operator and ladder operators. For example, taking the Kronecker product of two spin- 1 / 2 yields a four-dimensional representation, which is separable into a 3-dimensional spin-1 ( triplet ...
The Ehrenfest theorem, named after Austrian theoretical physicist Paul Ehrenfest, relates the time derivative of the expectation values of the position and momentum operators x and p to the expectation value of the force = ′ on a massive particle moving in a scalar potential (), [1]
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring (e.g. measurements which ...
where "H" and "S" label observables in Heisenberg and Schrödinger picture respectively, H is the Hamiltonian and [·,·] denotes the commutator of two operators (in this case H and A). Taking expectation values automatically yields the Ehrenfest theorem, featured in the correspondence principle.
Thus, the spin raising and lowering operators + = + and =, so that [+,] =, correspond (in the sense detailed below) to the bosonic annihilation and creation operators, respectively. The precise relations between the operators must be chosen to ensure the correct commutation relations for the spin operators, such that they act on a finite ...
The kinetic energy on the other hand must be represented by a scalar operator, whose expected value must be the same in the initial and the rotated states. In the same way, tensor quantities must be represented by tensor operators. An example of a tensor quantity (of rank two) is the electrical quadrupole moment of the above molecule.
where are the values of the e.g. z-component of the spin in a spin chain, and the A s i are matrices of arbitrary dimension m. As m → ∞, the representation becomes exact. This theory was exposed by S. Rommer and S. Ostlund in .
The field operators transform under Lorentz transformations according to the spin of the particle that they create, by definition. Additionally, the assumption (known as microcausality) that spacelike-separated fields either commute or anticommute can be made only for relativistic theories with a time direction.