Search results
Results From The WOW.Com Content Network
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring (e.g. measurements which ...
The expectation value of the ... Density matrices make it much easier to describe the process and calculate its consequences. Quantum decoherence explains why a ...
The vacuum expectation value of an operator O is usually denoted by . One of the most widely used examples of an observable physical effect that results from the vacuum expectation value of an operator is the Casimir effect. This concept is important for working with correlation functions in quantum field theory. It is also important in ...
Quantum state tomography is a process by which, given a set of data representing the results of quantum measurements, a quantum state consistent with those measurement results is computed. [50] It is named by analogy with tomography , the reconstruction of three-dimensional images from slices taken through them, as in a CT scan .
In quantum mechanics, the average, or expectation value of the position of a particle is given by = (). For the steady state particle in a box, it can be shown that the average position is always x = x c {\displaystyle \langle x\rangle =x_{c}} , regardless of the state of the particle.
The Ehrenfest theorem, named after Austrian theoretical physicist Paul Ehrenfest, relates the time derivative of the expectation values of the position and momentum operators x and p to the expectation value of the force = ′ on a massive particle moving in a scalar potential (), [1]
It is a hybrid algorithm that uses both classical computers and quantum computers to find the ground state of a given physical system. Given a guess or ansatz, the quantum processor calculates the expectation value of the system with respect to an observable, often the Hamiltonian, and a classical optimizer is used to
Re-arranging the equation leads to =, where the energy factor E is a scalar value, the energy the particle has and the value that is measured. The partial derivative is a linear operator so this expression is the operator for energy: E ^ = i ℏ ∂ ∂ t . {\displaystyle {\hat {E}}=i\hbar {\frac {\partial }{\partial t}}.}