Search results
Results From The WOW.Com Content Network
The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).
For example, to find the Hall divisors of 60, its prime power factorization is 2 2 × 3 × 5, so one takes any product of 3, 2 2 = 4, and 5. Thus, the Hall divisors of 60 are 1, 3, 4, 5, 12, 15, 20, and 60. A Hall subgroup of G is a subgroup whose order is a Hall divisor of the order of G. In other words, it is a subgroup whose order is coprime ...
For every divisor d of n, G has at most one subgroup of order d. If either (and thus both) are true, it follows that there exists exactly one subgroup of order d, for any divisor of n. This statement is known by various names such as characterization by subgroups. [5] [6] [7] (See also cyclic group for some characterization.)
the k given prime numbers p i must be precisely the first k prime numbers (2, 3, 5, ...); if not, we could replace one of the given primes by a smaller prime, and thus obtain a smaller number than n with the same number of divisors (for instance 10 = 2 × 5 may be replaced with 6 = 2 × 3; both have four divisors);
If R is a commutative ring, and a and b are in R, then an element d of R is called a common divisor of a and b if it divides both a and b (that is, if there are elements x and y in R such that d·x = a and d·y = b). If d is a common divisor of a and b, and every common divisor of a and b divides d, then d is called a greatest common divisor of ...
The number 18 is a harshad number in base 10, because the sum of the digits 1 and 8 is 9, and 18 is divisible by 9.; The Hardy–Ramanujan number (1729) is a harshad number in base 10, since it is divisible by 19, the sum of its digits (1729 = 19 × 91).
Equivalently, it is a number for which the sum of proper divisors (or aliquot sum) is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient. Denoting by σ(n) the sum of divisors, the value 2n – σ(n) is called the number's deficiency.
e = eA implies that the action of W e squares to the identity; for this reason, the resulting operator is called an Atkin–Lehner involution. If e and f are both Hall divisors of N, then W e and W f commute modulo Γ 0 (N). Moreover, if we define g to be the Hall divisor g = ef/(e,f) 2, their product is equal to W g modulo Γ 0 (N).