Search results
Results From The WOW.Com Content Network
The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]
While the Bohr model describes the electron's motion as uniform circular motion, analogous to classical circular motion, in reality its location in space is described by probability functions. Each probability function has a different average energy level, and corresponds to the likelihood of finding the electron in a specific atomic orbital ...
The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld .
Atomic orbitals are basic building blocks of the atomic orbital model (or electron cloud or wave mechanics model), a modern framework for visualizing submicroscopic behavior of electrons in matter. In this model, the electron cloud of an atom may be seen as being built up (in approximation) in an electron configuration that is a product of ...
The Bohr model of the atom, showing states of an electron with energy quantized by the number n. An electron dropping to a lower orbit emits a photon equal to the energy difference between the orbits An electron dropping to a lower orbit emits a photon equal to the energy difference between the orbits
This model, which became known as the Bohr–Sommerfeld model, allowed the orbits of the electron to be ellipses instead of circles, and introduced the concept of quantum degeneracy. The theory would have correctly explained the Zeeman effect, except for the issue of electron spin. Sommerfeld's model was much closer to the modern quantum ...
An electron in a Bohr model atom, moving from quantum level n = 3 to n = 2 and releasing a photon.The energy of an electron is determined by its orbit around the atom, The n = 0 orbit, commonly referred to as the ground state, has the lowest energy of all states in the system.
In the Bohr model, the transition of an electron with n=3 to the shell n=2 is shown, where a photon is emitted. An electron from shell (n=2) must have been removed beforehand by ionization. Electrons that populate a shell are said to be in a bound state.