Search results
Results From The WOW.Com Content Network
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
Calculating the distance between geographical coordinates is based on some level of abstraction; it does not provide an exact distance, which is unattainable if one attempted to account for every irregularity in the surface of the Earth. [1] Common abstractions for the surface between two geographic points are: Flat surface; Spherical surface;
The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. [1] Angles in polar notation are generally expressed in either degrees or radians (2 π rad being equal to 360°).
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
There are transformations that directly convert geodetic coordinates from one datum to another. There are more indirect transforms that convert from geodetic coordinates to ECEF coordinates, transform the ECEF coordinates from one datum to another, then transform ECEF coordinates of the new datum back to geodetic coordinates.
Here α, β, γ are the direction cosines and the Cartesian coordinates of the unit vector | |, and a, b, c are the direction angles of the vector v. The direction angles a , b , c are acute or obtuse angles , i.e., 0 ≤ a ≤ π , 0 ≤ b ≤ π and 0 ≤ c ≤ π , and they denote the angles formed between v and the unit basis vectors e x ...
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
The Schmidt net's horizontal axis can then be used as a scalar measuring device to convert the point's latitude (relative to the pole) into a radial distance from the centre of the circle. Alternatively, the Schmidt net could be replaced entirely with a correctly projected polar grid, and grid squares from a map re-drawn into this disc.