When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Circle packing - Wikipedia

    en.wikipedia.org/wiki/Circle_packing

    The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.

  3. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    The optimal packing of 15 circles in a square Optimal solutions have been proven for n ≤ 30. Packing circles in a rectangle; Packing circles in an isosceles right triangle - good estimates are known for n < 300. Packing circles in an equilateral triangle - Optimal solutions are known for n < 13, and conjectures are available for n < 28. [14]

  4. Circle packing in a square - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_in_a_square

    Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n , between points. [ 1 ]

  5. Circle packing in a circle - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_in_a_circle

    Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle. Table of solutions, 1 ≤ n ≤ 20 [ edit ]

  6. Introduction to Circle Packing - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_Circle_Packing

    The circle packing theorem states that a circle packing exists if and only if the pattern of adjacencies forms a planar graph; it was originally proved by Paul Koebe in the 1930s, and popularized by William Thurston, who rediscovered it in the 1970s and connected it with the theory of conformal maps and conformal geometry. [1]

  7. Circle packing theorem - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_theorem

    A circle packing for a five-vertex planar graph. The circle packing theorem (also known as the Koebe–Andreev–Thurston theorem) describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles (in general, on any Riemann surface) whose interiors are ...

  8. Smallest-circle problem - Wikipedia

    en.wikipedia.org/wiki/Smallest-circle_problem

    The algorithm selects one point p randomly and uniformly from P, and recursively finds the minimal circle containing P – {p}, i.e. all of the other points in P except p. If the returned circle also encloses p, it is the minimal circle for the whole of P and is returned. Otherwise, point p must lie on the boundary of the result circle.

  9. Category:Circle packing - Wikipedia

    en.wikipedia.org/wiki/Category:Circle_packing

    This category groups articles relating to the packing of circles in planes, on spheres, and on other types of surfaces, both with the aim of high packing density (circle packing) and with specified combinatorial patterns of tangencies (circle packing theorem).