Search results
Results From The WOW.Com Content Network
In geometry, a frustum (Latin for 'morsel'); [a] (pl.: frusta or frustums) is the portion of a solid (normally a pyramid or a cone) that lies between two parallel planes cutting the solid. In the case of a pyramid, the base faces are polygonal and the side faces are trapezoidal .
The base regularity of a pyramid's base may be classified based on the type of polygon: one example is the star pyramid in which its base is the regular star polygon. [24] The truncated pyramid is a pyramid cut off by a plane; if the truncation plane is parallel to the base of a pyramid, it is called a frustum.
A view frustum The appearance of an object in a pyramid of vision When creating a parallel projection, the viewing frustum is shaped like a box as opposed to a pyramid.. In 3D computer graphics, a viewing frustum [1] or view frustum [2] is the region of space in the modeled world that may appear on the screen; it is the field of view of a perspective virtual camera system.
The fourteenth problem of the Moscow Mathematical calculates the volume of a frustum. Problem 14 states that a pyramid has been truncated in such a way that the top area is a square of length 2 units, the bottom a square of length 4 units, and the height 6 units, as shown. The volume is found to be 56 cubic units, which is correct. [1]
A square frustum, with volume equal to the height times the Heronian mean of the square areas. The Heronian mean may be used in finding the volume of a frustum of a pyramid or cone. The volume is equal to the product of the height of the frustum and the Heronian mean of the areas of the opposing parallel faces. [2]
Problem 14 in the Moscow Mathematical Papyrus gives the only ancient example finding the volume of a frustum of a pyramid, describing the correct formula: = (+ +) where a and b are the base and top side lengths of the truncated pyramid and h is the height.
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
After giving the value of pi, he deals with the geometry of plane figures and solids, such as finding volumes and surface areas (or empty spaces dug out of solids). He finds the volume of rectangular prisms, pyramids, and the frustum of a square pyramid. He further finds the average depth of a series of pits.