When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    A right frustum is a right pyramid or a right cone truncated perpendicularly to its axis; [3] otherwise, it is an oblique frustum. In a truncated cone or truncated pyramid , the truncation plane is not necessarily parallel to the cone's base, as in a frustum.

  3. Tree volume measurement - Wikipedia

    en.wikipedia.org/wiki/Tree_volume_measurement

    The formula for the volume of a frustum of a paraboloid [23] [24] is: V = (π h/2)(r 1 2 + r 2 2), where h = height of the frustum, r 1 is the radius of the base of the frustum, and r 2 is the radius of the top of the frustum. This allows us to use a paraboloid frustum where that form appears more appropriate than a cone.

  4. Tree measurement - Wikipedia

    en.wikipedia.org/wiki/Tree_measurement

    The volume of each segment is calculated as the volume of a frustum of a cone where: Volume= h(π/3)(r 1 2 + r 2 2 +r 1 r 2) Frustum of a cone. A similar, but more complex formula can be used where the trunk is significantly more elliptical in shape where the lengths of the major and minor axis of the ellipse are measured at the top and bottom ...

  5. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    A cone with a region including its apex cut off by a plane is called a truncated cone; if the truncation plane is parallel to the cone's base, it is called a frustum. [1] An elliptical cone is a cone with an elliptical base. [ 1 ]

  6. Pyramid (geometry) - Wikipedia

    en.wikipedia.org/wiki/Pyramid_(geometry)

    The volume of a pyramid was recorded back in ancient Egypt, where they calculated the volume of a square frustum, suggesting they acquainted the volume of a square pyramid. [26] The formula of volume for a general pyramid was discovered by Indian mathematician Aryabhata , where he quoted in his Aryabhatiya that the volume of a pyramid is ...

  7. Heronian mean - Wikipedia

    en.wikipedia.org/wiki/Heronian_mean

    The volume is equal to the product of the height of the frustum and the Heronian mean of the areas of the opposing parallel faces. [2] A version of this formula, for square frusta, appears in the Moscow Mathematical Papyrus from Ancient Egyptian mathematics, whose content dates to roughly 1850 BC. [1] [3]

  8. Moscow Mathematical Papyrus - Wikipedia

    en.wikipedia.org/wiki/Moscow_Mathematical_Papyrus

    The fourteenth problem of the Moscow Mathematical calculates the volume of a frustum. Problem 14 states that a pyramid has been truncated in such a way that the top area is a square of length 2 units, the bottom a square of length 4 units, and the height 6 units, as shown. The volume is found to be 56 cubic units, which is correct. [1]

  9. Egyptian geometry - Wikipedia

    en.wikipedia.org/wiki/Egyptian_geometry

    Several problems in the Moscow Mathematical Papyrus (problem 14) and in the Rhind Mathematical Papyrus (numbers 44, 45, 46) compute the volume of a rectangular granary. [10] [11] Problem 14 of the Moscow Mathematical Papyrus computes the volume of a truncated pyramid, also known as a frustum.