Ad
related to: check clock speed
Search results
Results From The WOW.Com Content Network
The clock rate of the first generation of computers was measured in hertz or kilohertz (kHz), the first personal computers (PCs) to arrive throughout the 1970s and 1980s had clock rates measured in megahertz (MHz), and in the 21st century the speed of modern CPUs is commonly advertised in gigahertz (GHz).
Without knowing the clock frequency it is impossible to state if one set of timings is "faster" than another. For example, DDR3-2000 memory has a 1000 MHz clock frequency, which yields a 1 ns clock cycle. With this 1 ns clock, a CAS latency of 7 gives an absolute CAS latency of 7 ns. Faster DDR3-2666 memory (with a 1333 MHz clock, or 0.75 ns ...
Constant TSC behavior ensures that the duration of each clock tick is uniform and makes it possible to use the TSC as a wall-clock timer even if the processor core changes frequency. This is the architectural behavior for all later Intel processors. AMD processors up to the K8 core always incremented the time-stamp counter every clock cycle. [6]
BogoMips (from "bogus" and MIPS) is a crude measurement of CPU speed made by the Linux kernel when it boots to calibrate an internal busy-loop. [1] An often-quoted definition of the term is "the number of million times per second a processor can do absolutely nothing".
Instructions per second (IPS) is a measure of a computer's processor speed. For complex instruction set computers (CISCs), different instructions take different amounts of time, so the value measured depends on the instruction mix; even for comparing processors in the same family the IPS measurement can be problematic.
As of 2018, many Intel microprocessors are able to exceed a base clock speed of 4 GHz (Intel Core i7-7700K and i3-7350K have a base clock speed of 4.20 GHz, for example). In 2011, AMD was first able to break the 4 GHz barrier for x86 microprocessors with the debut of the initial Bulldozer based AMD FX CPUs. In June 2013, AMD released the FX ...
While early generations of CPUs carried out all the steps to execute an instruction sequentially, modern CPUs can do many things in parallel. As it is impossible to just keep doubling the speed of the clock, instruction pipelining and superscalar processor design have evolved so CPUs can use a variety of execution units in parallel - looking ahead through the incoming instructions in order to ...
With two transfers per cycle of a quadrupled clock signal, a 64-bit wide DDR3 module may achieve a transfer rate of up to 64 times the memory clock speed. With data being transferred 64 bits at a time per memory module, DDR3 SDRAM gives a transfer rate of (memory clock rate) × 4 (for bus clock multiplier) × 2 (for data rate) × 64 (number of ...