When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    The built-in beams shown in the figure below are statically indeterminate. To determine the stresses and deflections of such beams, the most direct method is to solve the Euler–Bernoulli beam equation with appropriate boundary conditions. But direct analytical solutions of the beam equation are possible only for the simplest cases.

  3. Timoshenko–Ehrenfest beam theory - Wikipedia

    en.wikipedia.org/wiki/Timoshenko–Ehrenfest_beam...

    The two equations that describe the deformation of a Timoshenko beam have to be augmented with boundary conditions if they are to be solved. Four boundary conditions are needed for the problem to be well-posed. Typical boundary conditions are: Simply supported beams: The displacement is

  4. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    The dynamic bending of beams, [12] also known as flexural vibrations of beams, was first investigated by Daniel Bernoulli in the late 18th century. Bernoulli's equation of motion of a vibrating beam tended to overestimate the natural frequencies of beams and was improved marginally by Rayleigh in 1877 by the addition of a mid-plane rotation.

  5. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    In this case, the equation governing the beam's deflection can be approximated as: = () where the second derivative of its deflected shape with respect to (being the horizontal position along the length of the beam) is interpreted as its curvature, is the Young's modulus, is the area moment of inertia of the cross-section, and is the internal ...

  6. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    The Euler–Bernoulli beam equation defines the behaviour of a beam element (see below). It is based on five assumptions: Continuum mechanics is valid for a bending beam. The stress at a cross section varies linearly in the direction of bending, and is zero at the centroid of every cross section.

  7. Solid mechanics - Wikipedia

    en.wikipedia.org/wiki/Solid_mechanics

    Solid mechanics (also known as mechanics of solids) is the branch of continuum mechanics that studies the behavior of solid materials, especially their motion and deformation under the action of forces, temperature changes, phase changes, and other external or internal agents.

  8. Beam (structure) - Wikipedia

    en.wikipedia.org/wiki/Beam_(structure)

    This equation accurately describes the elastic behaviour of slender beams where the cross sectional dimensions are small compared to the length of the beam. For beams that are not slender a different theory needs to be adopted to account for the deformation due to shear forces and, in dynamic cases, the rotary inertia.

  9. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    The starting point is the relation from Euler-Bernoulli beam theory = Where is the deflection and is the bending moment. This equation [7] is simpler than the fourth-order beam equation and can be integrated twice to find if the value of as a function of is known.