When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    One can then prove that this smoothed sum is asymptotic to ⁠− + 1 / 12 ⁠ + CN 2, where C is a constant that depends on f. The constant term of the asymptotic expansion does not depend on f: it is necessarily the same value given by analytic continuation, ⁠− + 1 / 12 ⁠. [1]

  3. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    The summation of an explicit sequence is denoted as a succession of additions. For example, summation of [1, 2, 4, 2] is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need for parentheses, and the result is the same irrespective of the order of the summands ...

  4. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula = (,) =,where (a, q) = 1 means that a only takes on values coprime to q.

  5. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    7.2 Sum of reciprocal of factorials. 7.3 Trigonometry and ... 12 languages. العربية ...

  6. Arithmetic progression - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_progression

    Computation of the sum 2 + 5 + 8 + 11 + 14. When the sequence is reversed and added to itself term by term, the resulting sequence has a single repeated value in it, equal to the sum of the first and last numbers (2 + 14 = 16). Thus 16 × 5 = 80 is twice the sum.

  7. 1/2 + 1/4 + 1/8 + 1/16 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/2_%2B_1/4_%2B_1/8_%2B_1/...

    In mathematics, the infinite series ⁠ 1 / 2 ⁠ + ⁠ 1 / 4 ⁠ + ⁠ 1 / 8 ⁠ + ⁠ 1 / 16 ⁠ + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1. In summation notation, this may be expressed as

  8. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  9. 1 − 2 + 3 − 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%E2%88%92_2_%2B_3_%E2%88...

    The (H, 1) sum is Cesàro summation, and higher methods repeat the computation of means. ... (1+x) 2, which this series is indeed equal to after we set x = 1. [12] ...