Ads
related to: balancing chemical equations with answers
Search results
Results From The WOW.Com Content Network
A chemical equation is the symbolic representation of a chemical reaction in the form of symbols and chemical formulas.The reactant entities are given on the left-hand side and the product entities are on the right-hand side with a plus sign between the entities in both the reactants and the products, and an arrow that points towards the products to show the direction of the reaction. [1]
Stoichiometry is not only used to balance chemical equations but also used in conversions, i.e., converting from grams to moles using molar mass as the conversion factor, or from grams to milliliters using density. For example, to find the amount of NaCl (sodium chloride) in 2.00 g, one would do the following:
The concept of chemical equilibrium was developed in 1803, after Berthollet found that some chemical reactions are reversible. [4] For any reaction mixture to exist at equilibrium, the rates of the forward and backward (reverse) reactions must be equal. In the following chemical equation, arrows point both ways to indicate equilibrium. [5]
Note the transfer of electrons from Fe to Cl. Decomposition is also a way to simplify the balancing of a chemical equation. A chemist can atom balance and charge balance one piece of an equation at a time. For example: Fe 2+ → Fe 3+ + e − becomes 2Fe 2+ → 2Fe 3+ + 2e −; is added to Cl 2 + 2e − → 2Cl −; and finally becomes Cl 2 ...
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings. One such equation involves the enthalpy change, which is denoted with Δ H {\displaystyle \Delta H} In variable form, a thermochemical equation would appear similar to the following:
A spectator ion is an ion that exists both as a reactant and a product in a chemical equation of an aqueous solution. [1] For example, in the reaction of aqueous solutions of sodium carbonate and copper(II) sulfate: 2 Na + + CO 2− 3 (aq) + Cu 2+ (aq) + SO 2− 4 (aq) → 2 Na + (aq) + SO 2− 4 (aq) + CuCO 3
Chemical reactions are described with chemical equations, which symbolically present the starting materials, end products, and sometimes intermediate products and reaction conditions. Chemical reactions happen at a characteristic reaction rate at a given temperature and chemical concentration.
While, as noted, chemical formulae do not have the full power of structural formulae to show chemical relationships between atoms, they are sufficient to keep track of numbers of atoms and numbers of electrical charges in chemical reactions, thus balancing chemical equations so that these equations can be used in chemical problems involving ...