Ad
related to: triangle inequality theorem
Search results
Results From The WOW.Com Content Network
The converse of the triangle inequality theorem is also true: if three real numbers are such that each is less than the sum of the others, then there exists a triangle with these numbers as its side lengths and with positive area; and if one number equals the sum of the other two, there exists a degenerate triangle (that is, with zero area ...
The parameters most commonly appearing in triangle inequalities are: the side lengths a, b, and c;; the semiperimeter s = (a + b + c) / 2 (half the perimeter p);; the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
Triangle inequality: If a, b, and c are the lengths of the sides of a triangle then the triangle inequality states that +, with equality only in the degenerate case of a triangle with zero area. In Euclidean geometry and some other geometries, the triangle inequality is a theorem about vectors and vector lengths :
Erdős–Mordell inequality. Let be an arbitrary point P inside a given triangle , and let , , and be the perpendiculars from to the sides of the triangles. (If the triangle is obtuse, one of these perpendiculars may cross through a different side of the triangle and end on the line supporting one of the sides.)
The reverse inequality follows from the same argument as the standard Minkowski, but uses that Holder's inequality is also reversed in this range. Using the Reverse Minkowski, we may prove that power means with p ≤ 1 , {\textstyle p\leq 1,} such as the harmonic mean and the geometric mean are concave.
The triangle inequality states that the sum of the lengths of any two sides of a triangle must be greater than or equal to the length of the third side. [48] Conversely, some triangle with three given positive side lengths exists if and only if those side lengths satisfy the triangle inequality. [49]
Hadwiger–Finsler inequality is actually equivalent to Weitzenböck's inequality. Applying (W) to the circummidarc triangle gives (HF) [1] Weitzenböck's inequality can also be proved using Heron's formula, by which route it can be seen that equality holds in (W) if and only if the triangle is an equilateral triangle, i.e. a = b = c.
In geometry, Barrow's inequality is an inequality relating the distances between an arbitrary point within a triangle, the vertices of the triangle, and certain points on the sides of the triangle. It is named after David Francis Barrow .