When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Principal ideal domain - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal_domain

    All principal ideal domains are integrally closed. The previous three statements give the definition of a Dedekind domain, and hence every principal ideal domain is a Dedekind domain. Let A be an integral domain, the following are equivalent. A is a PID. Every prime ideal of A is principal. [13] A is a Dedekind domain that is a UFD.

  3. Principal ideal - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal

    A ring in which every ideal is principal is called principal, or a principal ideal ring. A principal ideal domain (PID) is an integral domain in which every ideal is principal. Any PID is a unique factorization domain; the normal proof of unique factorization in the integers (the so-called fundamental theorem of arithmetic) holds in any PID.

  4. Proportional–integral–derivative controller - Wikipedia

    en.wikipedia.org/wiki/Proportional–integral...

    The distinguishing feature of the PID controller is the ability to use the three control terms of proportional, integral and derivative influence on the controller output to apply accurate and optimal control. The block diagram on the right shows the principles of how these terms are generated and applied.

  5. PID - Wikipedia

    en.wikipedia.org/wiki/PID

    PID controller (proportional-integral-derivative controller), a control concept used in automation; Piping and instrumentation diagram (P&ID), a diagram in the process industry which shows the piping of the process flow etc. Principal ideal domain, an algebraic structure; Process identifier, a number used by many operating systems to identify a ...

  6. Ascending chain condition on principal ideals - Wikipedia

    en.wikipedia.org/wiki/Ascending_chain_condition...

    An integral domain A satisfies (ACCP) if and only if the polynomial ring A[t] does. [2] The analogous fact is false if A is not an integral domain. [3] An integral domain where every finitely generated ideal is principal (that is, a Bézout domain) satisfies (ACCP) if and only if it is a principal ideal domain. [4]

  7. Principal ideal ring - Wikipedia

    en.wikipedia.org/wiki/Principal_ideal_ring

    A local Artinian principal ring is called a special principal ring and has an extremely simple ideal structure: there are only finitely many ideals, each of which is a power of the maximal ideal. For this reason, special principal rings are examples of uniserial rings .

  8. Dedekind domain - Wikipedia

    en.wikipedia.org/wiki/Dedekind_domain

    In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors.

  9. Piping and instrumentation diagram - Wikipedia

    en.wikipedia.org/wiki/Piping_and_instrumentation...

    Piping and instrumentation diagram of pump with storage tank. Symbols according to EN ISO 10628 and EN 62424. A more complex example of a P&ID. A piping and instrumentation diagram (P&ID) is defined as follows: A diagram which shows the interconnection of process equipment and the instrumentation used to control the process.