When.com Web Search

  1. Ad

    related to: uniform acceleration calculator with mass and distance math lab

Search results

  1. Results From The WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances. If an object fell 10 000 m to Earth, then the results of both ...

  3. Mean speed theorem - Wikipedia

    en.wikipedia.org/wiki/Mean_speed_theorem

    Mean speed theorem. Oresme's geometric verification of the Oxford Calculators' Merton Rule of uniform acceleration, or mean speed theorem. Galileo 's demonstration of the law of the space traversed in case of uniformly varied motion. It is the same demonstration that Oresme had made centuries earlier. The mean speed theorem, also known as the ...

  4. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    List of moments of inertia. Moment of inertia, denoted by I, measures the extent to which an object resists rotational acceleration about a particular axis; it is the rotational analogue to mass (which determines an object's resistance to linear acceleration). The moments of inertia of a mass have units of dimension ML 2 ( [mass] × [length] 2).

  5. Atwood machine - Wikipedia

    en.wikipedia.org/wiki/Atwood_machine

    Atwood's machine is a common classroom demonstration used to illustrate principles of classical mechanics. The ideal Atwood machine consists of two objects of mass m1 and m2, connected by an inextensible massless string over an ideal massless pulley. [1] Both masses experience uniform acceleration. When m1 = m2, the machine is in neutral ...

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    The first general equation of motion developed was Newton's second law of motion. In its most general form it states the rate of change of momentum p = p(t) = mv(t) of an object equals the force F = F(x(t), v(t), t) acting on it, [13]: 1112. The force in the equation is not the force the object exerts.

  7. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Average acceleration. Acceleration is the rate of change of velocity. At any point on a trajectory, the magnitude of the acceleration is given by the rate of change of velocity in both magnitude and direction at that point. The true acceleration at time t is found in the limit as time interval Δt → 0 of Δv/Δt.

  8. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    v. t. e. Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move. [1][2][3] Kinematics, as a field of study, is often referred to as the "geometry of motion" and ...

  9. Modified Newtonian dynamics - Wikipedia

    en.wikipedia.org/wiki/Modified_Newtonian_dynamics

    This is known as the mass discrepancy-acceleration relation, and has been measured observationally. [24] [25] One aspect of the MOND prediction is that the mass of the inferred dark matter goes to zero when the stellar centripetal acceleration becomes greater than a 0, where MOND reverts to Newtonian mechanics. In a dark matter hypothesis, it ...