Search results
Results From The WOW.Com Content Network
Another example of a pullback comes from the theory of fiber bundles: given a bundle map π : E → B and a continuous map f : X → B, the pullback (formed in the category of topological spaces with continuous maps) X × B E is a fiber bundle over X called the pullback bundle. The associated commutative diagram is a morphism of fiber bundles.
This linear map is known as the pullback (by ), and is frequently denoted by . More generally, any covariant tensor field – in particular any differential form – on N {\displaystyle N} may be pulled back to M {\displaystyle M} using ϕ {\displaystyle \phi } .
The pullback bundle is an example that bridges the notion of a pullback as precomposition, and the notion of a pullback as a Cartesian square. In that example, the base space of a fiber bundle is pulled back, in the sense of precomposition, above. The fibers then travel along with the points in the base space at which they are anchored: the ...
In mathematics, a pullback bundle or induced bundle [1] [2] [3] is the fiber bundle that is induced by a map of its base-space. Given a fiber bundle π : E → B and a continuous map f : B′ → B one can define a "pullback" of E by f as a bundle f * E over B′. The fiber of f * E over a point b′ in B′ is just the fiber of E over f(b′).
The limit of this diagram is called the J th power of X and denoted X J. Equalizers. If J is a category with two objects and two parallel morphisms from one object to the other, then a diagram of shape J is a pair of parallel morphisms in C. The limit L of such a diagram is called an equalizer of those morphisms. Kernels.
The simplest case of a blowup is the blowup of a point in a plane. Most of the general features of blowing up can be seen in this example. The blowup has a synthetic description as an incidence correspondence.
Conversely, general bundle maps can be reduced to bundle maps over a fixed base space using the notion of a pullback bundle. If π F:F→ N is a fiber bundle over N and f:M→ N is a continuous map, then the pullback of F by f is a fiber bundle f * F over M whose fiber over x is given by (f * F) x = F f(x).
For example, if X, Y are manifolds, R the field of real numbers, and the cohomology is de Rham cohomology, then the pullback is induced by the pullback of differential forms. The homotopy invariance of cohomology states that if two maps f, g: X → Y are homotopic to each other, then they determine the same pullback: f * = g *.