When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pullback (category theory) - Wikipedia

    en.wikipedia.org/wiki/Pullback_(category_theory)

    Another example of a pullback comes from the theory of fiber bundles: given a bundle map π : E → B and a continuous map f : X → B, the pullback (formed in the category of topological spaces with continuous maps) X × B E is a fiber bundle over X called the pullback bundle. The associated commutative diagram is a morphism of fiber bundles.

  3. Pullback (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Pullback_(differential...

    This linear map is known as the pullback (by ), and is frequently denoted by . More generally, any covariant tensor field – in particular any differential form – on N {\displaystyle N} may be pulled back to M {\displaystyle M} using ϕ {\displaystyle \phi } .

  4. Pullback - Wikipedia

    en.wikipedia.org/wiki/Pullback

    The pullback bundle is an example that bridges the notion of a pullback as precomposition, and the notion of a pullback as a Cartesian square. In that example, the base space of a fiber bundle is pulled back, in the sense of precomposition, above. The fibers then travel along with the points in the base space at which they are anchored: the ...

  5. Limit (category theory) - Wikipedia

    en.wikipedia.org/wiki/Limit_(category_theory)

    The limit of this diagram is called the J th power of X and denoted X J. Equalizers. If J is a category with two objects and two parallel morphisms from one object to the other, then a diagram of shape J is a pair of parallel morphisms in C. The limit L of such a diagram is called an equalizer of those morphisms. Kernels.

  6. Pullback bundle - Wikipedia

    en.wikipedia.org/wiki/Pullback_bundle

    In mathematics, a pullback bundle or induced bundle [1] [2] [3] is the fiber bundle that is induced by a map of its base-space. Given a fiber bundle π : E → B and a continuous map f : B′ → B one can define a "pullback" of E by f as a bundle f * E over B′. The fiber of f * E over a point b′ in B′ is just the fiber of E over f(b′).

  7. Exterior derivative - Wikipedia

    en.wikipedia.org/wiki/Exterior_derivative

    The exterior derivative is natural in the technical sense: if f : M → N is a smooth map and Ω k is the contravariant smooth functor that assigns to each manifold the space of k-forms on the manifold, then the following diagram commutes so d( f ∗ ω) = f ∗ dω, where f ∗ denotes the pullback of f .

  8. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    This is sometimes a source of confusion for two distinct but related reasons. The first is that vectors whose components are covariant (called covectors or 1-forms) actually pull back under smooth functions, meaning that the operation assigning the space of covectors to a smooth manifold is actually a contravariant functor.

  9. Vector-valued differential form - Wikipedia

    en.wikipedia.org/wiki/Vector-valued_differential...

    One can define the pullback of vector-valued forms by smooth maps just as for ordinary forms. The pullback of an E-valued form on N by a smooth map φ : M → N is an (φ*E)-valued form on M, where φ*E is the pullback bundle of E by φ. The formula is given just as in the ordinary case. For any E-valued p-form ω on N the pullback φ*ω is ...