When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    When is an matrix, it is a property of matrix multiplication that = =. In particular, the identity matrix serves as the multiplicative identity of the matrix ring of all n × n {\displaystyle n\times n} matrices, and as the identity element of the general linear group G L ( n ) {\displaystyle GL(n)} , which consists of all invertible n × n ...

  3. Matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Matrix_multiplication

    Matrix multiplication shares some properties with usual multiplication. However, matrix multiplication is not defined if the number of columns of the first factor differs from the number of rows of the second factor, and it is non-commutative, [10] even when the product remains defined after changing the order of the factors. [11] [12]

  4. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    It is called an identity matrix because multiplication with it leaves a matrix unchanged: = = for any m-by-n matrix A. A nonzero scalar multiple of an identity matrix is called a scalar matrix. If the matrix entries come from a field, the scalar matrices form a group, under matrix multiplication, that is isomorphic to the multiplicative group ...

  5. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A Hankel matrix. Identity matrix: A square diagonal matrix, with all entries on the main diagonal equal to 1, and the rest 0. a ij = δ ij: Lehmer matrix: a ij = min(i, j) ÷ max(i, j). A positive symmetric matrix. Matrix of ones: A matrix with all entries equal to one. a ij = 1. Pascal matrix: A matrix containing the entries of Pascal's ...

  6. Gamma matrices - Wikipedia

    en.wikipedia.org/wiki/Gamma_matrices

    The defining property for the gamma matrices to generate a Clifford algebra is the anticommutation relation {,} = + = ,where the curly brackets {,} represent the anticommutator, is the Minkowski metric with signature (+ − − −), and is the 4 × 4 identity matrix.

  7. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  8. Transformation matrix - Wikipedia

    en.wikipedia.org/wiki/Transformation_matrix

    In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...

  9. Category of matrices - Wikipedia

    en.wikipedia.org/wiki/Category_of_matrices

    The identity morphism at each object is given by the identity matrix; The composition of morphisms A : m → n {\displaystyle A:m\to n} and B : n → p {\displaystyle B:n\to p} (i.e. of matrices n × m {\displaystyle n\times m} and p × n {\displaystyle p\times n} ) is given by matrix multiplication .