Search results
Results From The WOW.Com Content Network
Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.
DNA repair pathways can result in the formation of tumor cells. Cancer treatments have been engineered using DNA cross-linking agents to interact with nitrogenous bases of DNA to block DNA replication. These cross-linking agents have the ability to act as single-agent therapies by targeting and destroying specific nucleotides in cancerous cells.
During DNA replication, the replisome will unwind the parental duplex DNA into a two single-stranded DNA template replication fork in a 5' to 3' direction. The leading strand is the template strand that is being replicated in the same direction as the movement of the replication fork.
Genetic linkage is the tendency of DNA sequences that are close together on a chromosome to be inherited together during the meiosis phase of sexual reproduction.Two genetic markers that are physically near to each other are unlikely to be separated onto different chromatids during chromosomal crossover, and are therefore said to be more linked than markers that are far apart.
Asymmetry in the synthesis of leading and lagging strands. Okazaki fragments are short sequences of DNA nucleotides (approximately 150 to 200 base pairs long in eukaryotes) which are synthesized discontinuously and later linked together by the enzyme DNA ligase to create the lagging strand during DNA replication. [1]
In DNA replication, for example, formation of the phosphodiester bonds is catalyzed by a DNA polymerase enzyme, using a pair of magnesium cations and other supporting structures. [3] Formation of the bond occurs not only in DNA and RNA replication, but also in the repair and recombination of nucleic acids, and may require the involvement of ...
DNA polymerase will then take each nucleotide and make a new complementary DNA strand to the template strand, but only in the 5' to 3' direction. One of the new strands, the leading strand, moves in the 5' to 3' direction until it reaches the replication fork, allowing DNA polymerase to take the RNA primer and make a new complementary DNA ...
First, the single-stranded DNA binds domain III and I. The catalytic tyrosine cleaves the DNA backbone, creating a transient 5' phosphotyrosine intermediate. The break is then separated, using domain II as a hinge, and a second duplex or strand of DNA is passed through. Domain III and I close and the DNA is re-annealed.