Ad
related to: stable vs unstable equilibrium physics examples video for middle school
Search results
Results From The WOW.Com Content Network
The simplest kind of an orbit is a fixed point, or an equilibrium. If a mechanical system is in a stable equilibrium state then a small push will result in a localized motion, for example, small oscillations as in the case of a pendulum. In a system with damping, a stable equilibrium state is moreover asymptotically stable. On the other hand ...
For example, the function / (defined as 0 in x=0) has all derivatives equal to zero. At the same time, this function has a local minimum in x=0, so it is a stable equilibrium. If this function is multiplied by the Sign function, all derivatives will still be zero but it will become an unstable equilibrium.
The unstable solution can then form another saddle-node bifurcation with the initial stable solution at a higher value of the parameter, leaving only the higher fixed solution. Thus, at values of the parameter between the two critical values, the system has two stable solutions. An example of a dynamical system that demonstrates similar features is
In addition, a structurally stable system may have transversal homoclinic trajectories of hyperbolic saddle closed orbits and infinitely many periodic orbits, even though the phase space is compact. The closest higher-dimensional analogue of structurally stable systems considered by Andronov and Pontryagin is given by the Morse–Smale systems.
[6] [non-primary source needed] The summary of the results is that the three-dimensional homogeneous convex (mono-monostatic) body, which has one stable and one unstable equilibrium point, does exist and is not unique. Their form is dissimilar to any typical representative of any other equilibrium geometrical class.
A typical example of a differential equation with a saddle-node bifurcation is: = +. Here is the state variable and is the bifurcation parameter.. If < there are two equilibrium points, a stable equilibrium point at and an unstable one at +.
An attractor is a stable point which is also called a "sink". The repeller is considered as an unstable point, which is also known as a "source". A phase portrait graph of a dynamical system depicts the system's trajectories (with arrows) and stable steady states (with dots) and unstable steady states (with circles) in a phase space.
When the curve goes down to zero the point is unstable, and will flow down to zero along the action of . When the flow stays between zero and infinity, the point is in an unstable equilibrium (semi-stable). This analogy with mechanical equilibrium motivates the terminology of stability and instability.