Search results
Results From The WOW.Com Content Network
A similar but different real-line system, the projectively extended real line, does not distinguish between + and (i.e. infinity is unsigned). [4] As a result, a function may have limit on the projectively extended real line, while in the extended real number system only the absolute value of the function has a limit, e.g. in the case of the ...
The converse, though, does not necessarily hold: for example, taking f as =, where V is a Vitali set, it is clear that f is not measurable, but its absolute value is, being a constant function. The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function.
The standard part function can also be defined for infinite hyperreal numbers as follows: If x is a positive infinite hyperreal number, set st(x) to be the extended real number +, and likewise, if x is a negative infinite hyperreal number, set st(x) to be (the idea is that an infinite hyperreal number should be smaller than the "true" absolute ...
In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain . Real-valued functions of a real variable (commonly called real functions ) and real-valued functions of several real variables are the main object of study of calculus and ...
The image of a function f(x 1, x 2, …, x n) is the set of all values of f when the n-tuple (x 1, x 2, …, x n) runs in the whole domain of f.For a continuous (see below for a definition) real-valued function which has a connected domain, the image is either an interval or a single value.
The projectively extended real line can be visualized as the real number line wrapped around a circle (by some form of stereographic projection) with an additional point at infinity. In real analysis , the projectively extended real line (also called the one-point compactification of the real line ), is the extension of the set of the real ...
A complex-valued function of a real variable may be defined by relaxing, in the definition of the real-valued functions, the restriction of the codomain to the real numbers, and allowing complex values. If f(x) is such a complex valued function, it may be decomposed as f(x) = g(x) + ih(x), where g and h are real-valued functions. In other words ...
Epigraph of a function A function (in black) is convex if and only if the region above its graph (in green) is a convex set.This region is the function's epigraph. In mathematics, the epigraph or supergraph [1] of a function: [,] valued in the extended real numbers [,] = {} is the set = {(,) : ()} consisting of all points in the Cartesian product lying on or above the function's graph. [2]