Search results
Results From The WOW.Com Content Network
Second, all local maxima that have height lower or equal to a given threshold are suppressed. The height f of the remaining maxima is decreased by h {\displaystyle h} . The h-maxima transform is defined as the reconstruction by dilation of f {\displaystyle f} from f − h {\displaystyle f-h} :
A surface with two local maxima. (Only one of them is the global maximum.) If a hill-climber begins in a poor location, it may converge to the lower maximum. Hill climbing will not necessarily find the global maximum, but may instead converge on a local maximum. This problem does not occur if the heuristic is convex.
Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points. [1]
Global optimization is distinguished from local optimization by its focus on finding the minimum or maximum over the given set, as opposed to finding local minima or maxima. Finding an arbitrary local minimum is relatively straightforward by using classical local optimization methods. Finding the global minimum of a function is far more ...
The detection and description of local image features can help in object recognition. The SIFT features are local and based on the appearance of the object at particular interest points, and are invariant to image scale and rotation. They are also robust to changes in illumination, noise, and minor changes in viewpoint.
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]
However, as the image gets complex, different local areas will need very different threshold values to accurately find the real edges. In addition, the global threshold values are determined manually through experiments in the traditional method, which leads to a complexity of calculation when a large number of different images need to be dealt ...
For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we have f(x ∗) > f(x). Note that a point is a strict global maximum point if and only if ...