Search results
Results From The WOW.Com Content Network
Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materials. [1] Work hardening may be desirable, undesirable, or inconsequential, depending on the application.
The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain , or ...
The construction of nanolaminated structure with low-angle grain boundaries is one method to obtain ultrafine grained materials with ultra-strength. Lu et al. [25] applied a very high rate shear deformation with high strain gradients on the top surface layer of bulk Ni sample and introduced nanolaminated structures. This material exhibits an ...
Subscript 0 denotes the original dimensions of the sample. The SI derived unit for stress is newtons per square metre, or pascals (1 pascal = 1 Pa = 1 N/m 2), and strain is unitless. The stress–strain curve for this material is plotted by elongating the sample and recording the stress variation with strain until the sample fractures. By ...
Hardening is a metallurgical metalworking process used to increase the hardness of a metal. The hardness of a metal is directly proportional to the uniaxial yield stress at the location of the imposed strain. A harder metal will have a higher resistance to plastic deformation than a less hard metal.
In this form, K and n are not the same as the constants commonly seen in the Hollomon equation. [2] The equation is essentially assuming the elastic strain portion of the stress-strain curve, , can be modeled with a line, while the plastic portion, , can be modeled with a power law. The elastic and plastic components are summed to find the ...
Engineered Cementitious Composite (ECC), also called Strain Hardening Cement-based Composites (SHCC) or more popularly as bendable concrete, is an easily molded mortar-based composite reinforced with specially selected short random fibers, usually polymer fibers. [1]
[1] [2] Dislocation glide cannot act on its own to produce large strains due to the effects of strain-hardening, where a dislocation ‘tangle’ can inhibit the movement of other dislocations, which then pile up behind the blocked ones causing the crystal to become difficult to deform. Diffusion and dislocation creep can occur simultaneously.