When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    Wade and Wade [17] first introduced the categorization of Pythagorean triples by their height, defined as c − b, linking 3,4,5 to 5,12,13 and 7,24,25 and so on. McCullough and Wade [18] extended this approach, which produces all Pythagorean triples when k > h √ 2 /d: Write a positive integer h as pq 2 with p square-free and q positive.

  3. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. Every Pythagorean triple can be scaled to a unique primitive Pythagorean triple by dividing (a, b, c) by their greatest common divisor ...

  4. Tree of primitive Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Tree_of_primitive...

    A Pythagorean triple is a set of three positive integers a, b, and c having the property that they can be respectively the two legs and the hypotenuse of a right triangle, thus satisfying the equation + =; the triple is said to be primitive if and only if the greatest common divisor of a, b, and c is one.

  5. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).

  6. Pell number - Wikipedia

    en.wikipedia.org/wiki/Pell_number

    If a right triangle has integer side lengths a, b, c (necessarily satisfying the Pythagorean theorem a 2 + b 2 = c 2), then (a,b,c) is known as a Pythagorean triple. As Martin (1875) describes, the Pell numbers can be used to form Pythagorean triples in which a and b are one unit apart, corresponding to right triangles that are nearly isosceles.

  7. Plimpton 322 - Wikipedia

    en.wikipedia.org/wiki/Plimpton_322

    Plimpton 322 is a Babylonian clay tablet, believed to have been written around 1800 BC, that contains a mathematical table written in cuneiform script.Each row of the table relates to a Pythagorean triple, that is, a triple of integers (,,) that satisfies the Pythagorean theorem, + =, the rule that equates the sum of the squares of the legs of a right triangle to the square of the hypotenuse.

  8. Sum of squares - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares

    A Pythagorean prime is a prime that is the sum of two squares; Fermat's theorem on sums of two squares states which primes are Pythagorean primes. Pythagorean triangles with integer altitude from the hypotenuse have the sum of squares of inverses of the integer legs equal to the square of the inverse of the integer altitude from the hypotenuse.

  9. Pythagorean Triangles - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_Triangles

    Chapter 13 relates Pythagorean triangles to rational points on a unit circle, Chapter 14 discusses right triangles whose sides are unit fractions rather than integers, and Chapter 15 is about the Euler brick problem, a three-dimensional generalization of Pythagorean triangles, and related problems on integer-sided tetrahedra.