Search results
Results From The WOW.Com Content Network
In statistics and econometrics, the multivariate probit model is a generalization of the probit model used to estimate several correlated binary outcomes jointly. For example, if it is believed that the decisions of sending at least one child to public school and that of voting in favor of a school budget are correlated (both decisions are binary), then the multivariate probit model would be ...
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process . [ 1 ]
The basic form of a linear predictor function () for data point i (consisting of p explanatory variables), for i = 1, ..., n, is = + + +,where , for k = 1, ..., p, is the value of the k-th explanatory variable for data point i, and , …, are the coefficients (regression coefficients, weights, etc.) indicating the relative effect of a particular explanatory variable on the outcome.
Such a model is a log-odds or logistic model. Generalized linear models cover all these situations by allowing for response variables that have arbitrary distributions (rather than simply normal distributions ), and for an arbitrary function of the response variable (the link function ) to vary linearly with the predictors (rather than assuming ...
It is a model-free measure in the sense that it simply relies on calculating the estimator again with a different sample. On the right is Tukey's biweight function, which, as we will later see, is an example of what a "good" (in a sense defined later on) empirical influence function should look like.
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.
Estimation statistics, or simply estimation, is a data analysis framework that uses a combination of effect sizes, confidence intervals, precision planning, and meta-analysis to plan experiments, analyze data and interpret results. [1]
Multidimensional scaling (MDS) is a means of visualizing the level of similarity of individual cases of a data set. MDS is used to translate distances between each pair of objects in a set into a configuration of points mapped into an abstract Cartesian space.