Search results
Results From The WOW.Com Content Network
An infinite set of vectors is linearly independent if every nonempty finite subset is linearly independent. Conversely, an infinite set of vectors is linearly dependent if it contains a finite subset that is linearly dependent, or equivalently, if some vector in the set is a linear combination of other vectors in the set.
For finite-dimensional real vectors in with the usual Euclidean dot product, the Gram matrix is =, where is a matrix whose columns are the vectors and is its transpose whose rows are the vectors . For complex vectors in C n {\displaystyle \mathbb {C} ^{n}} , G = V † V {\displaystyle G=V^{\dagger }V} , where V † {\displaystyle V^{\dagger ...
In mathematics, a free module is a module that has a basis, that is, a generating set that is linearly independent. Every vector space is a free module, [1] but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules. Given any set S and ring R, there is a free R-module ...
In combinatorics, a matroid / ˈ m eɪ t r ɔɪ d / is a structure that abstracts and generalizes the notion of linear independence in vector spaces.There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats.
Consider the two subspaces = (), and = (), of the vector space .. Using the standard basis, we create the following matrix of dimension (+) (): ().Using elementary row operations, we transform this matrix into the following matrix:
The Gram–Schmidt process takes a finite, linearly independent set of vectors = {, …,} for k ≤ n and generates an orthogonal set ′ = {, …,} that spans the same -dimensional subspace of as . The method is named after Jørgen Pedersen Gram and Erhard Schmidt , but Pierre-Simon Laplace had been familiar with it before Gram and Schmidt. [ 1 ]
In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.
In linear algebra, given a vector space with a basis of vectors indexed by an index set (the cardinality of is the dimension of ), the dual set of is a set of vectors in the dual space with the same index set such that and form a biorthogonal system.