When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear independence - Wikipedia

    en.wikipedia.org/wiki/Linear_independence

    An infinite set of vectors is linearly independent if every nonempty finite subset is linearly independent. Conversely, an infinite set of vectors is linearly dependent if it contains a finite subset that is linearly dependent, or equivalently, if some vector in the set is a linear combination of other vectors in the set.

  3. Wronskian - Wikipedia

    en.wikipedia.org/wiki/Wronskian

    In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.

  4. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    For finite-dimensional real vectors in with the usual Euclidean dot product, the Gram matrix is =, where is a matrix whose columns are the vectors and is its transpose whose rows are the vectors . For complex vectors in C n {\displaystyle \mathbb {C} ^{n}} , G = V † V {\displaystyle G=V^{\dagger }V} , where V † {\displaystyle V^{\dagger ...

  5. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    Let A be a square n × n matrix with n linearly independent eigenvectors q i (where i = 1, ..., n).Then A can be factored as = where Q is the square n × n matrix whose i th column is the eigenvector q i of A, and Λ is the diagonal matrix whose diagonal elements are the corresponding eigenvalues, Λ ii = λ i.

  6. Generalized eigenvector - Wikipedia

    en.wikipedia.org/wiki/Generalized_eigenvector

    Consequently, there will be three linearly independent generalized eigenvectors; one each of ranks 3, 2 and 1. Since λ 1 {\displaystyle \lambda _{1}} corresponds to a single chain of three linearly independent generalized eigenvectors, we know that there is a generalized eigenvector x 3 {\displaystyle \mathbf {x} _{3}} of rank 3 corresponding ...

  7. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Since the columns of P must be linearly independent for P to be invertible, there exist n linearly independent eigenvectors of A. It then follows that the eigenvectors of A form a basis if and only if A is diagonalizable. A matrix that is not diagonalizable is said to be defective.

  8. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    A singular value for which we can find two left (or right) singular vectors that are linearly independent is called degenerate. If ⁠ u 1 {\displaystyle \mathbf {u} _{1}} ⁠ and ⁠ u 2 {\displaystyle \mathbf {u} _{2}} ⁠ are two left-singular vectors which both correspond to the singular value σ, then any normalized linear combination of ...

  9. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    A basis B of the LP is called dual-optimal if the solution = is an optimal solution to the dual linear program, that is, it minimizes . In general, a primal-optimal basis is not necessarily dual-optimal, and a dual-optimal basis is not necessarily primal-optimal (in fact, the solution of a primal-optimal basis may even be unfeasible for the ...