Search results
Results From The WOW.Com Content Network
Although an explicit inverse is not necessary to estimate the vector of unknowns, it is the easiest way to estimate their accuracy, found in the diagonal of a matrix inverse (the posterior covariance matrix of the vector of unknowns). However, faster algorithms to compute only the diagonal entries of a matrix inverse are known in many cases. [19]
Any matrix can be decomposed as = for some isometries , and diagonal nonnegative real matrix . The pseudoinverse can then be written as A + = V D + U ∗ {\displaystyle A^{+}=VD^{+}U^{*}} , where D + {\displaystyle D^{+}} is the pseudoinverse of D {\displaystyle D} and can be obtained by transposing the matrix and replacing the nonzero values ...
The group inverse can be defined, equivalently, by the properties AA # A = A, A # AA # = A #, and AA # = A # A. A projection matrix P, defined as a matrix such that P 2 = P, has index 1 (or 0) and has Drazin inverse P D = P. If A is a nilpotent matrix (for example a shift matrix), then = The hyper-power sequence is
In mathematics, and in particular, algebra, a generalized inverse (or, g-inverse) of an element x is an element y that has some properties of an inverse element but not necessarily all of them. The purpose of constructing a generalized inverse of a matrix is to obtain a matrix that can serve as an inverse in some sense for a wider class of ...
One of the three classes of elementary matrix is involutory, namely the row-interchange elementary matrix. A special case of another class of elementary matrix, that which represents multiplication of a row or column by −1, is also involutory; it is in fact a trivial example of a signature matrix, all of which are involutory.
In statistics, the precision matrix or concentration matrix is the matrix inverse of the covariance matrix or dispersion matrix, =. [ 1 ] [ 2 ] [ 3 ] For univariate distributions , the precision matrix degenerates into a scalar precision , defined as the reciprocal of the variance , p = 1 σ 2 {\displaystyle p={\frac {1}{\sigma ^{2}}}} .
A square matrix may have a multiplicative inverse, called an inverse matrix. In the common case where the entries belong to a commutative ring R, a matrix has an inverse if and only if its determinant has a multiplicative inverse in R. The determinant of a product of square matrices is the product of the determinants of the factors.
Any real symplectic matrix can be decomposed as a product of three matrices: = ′, where and ′ are both symplectic and orthogonal, and is positive-definite and diagonal. [6] This decomposition is closely related to the singular value decomposition of a matrix and is known as an 'Euler' or 'Bloch-Messiah' decomposition.