Search results
Results From The WOW.Com Content Network
In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [2]
An even larger, multivolume table is the Integrals and Series by Prudnikov, Brychkov, and Marichev (with volumes 1–3 listing integrals and series of elementary and special functions, volume 4–5 are tables of Laplace transforms).
Liouvillian function – Elementary functions and their finitely iterated integrals; Nonelementary integral – Integrals not expressible in closed-form from elementary functions; Risch algorithm – Method for evaluating indefinite integrals; Tarski's high school algebra problem – Mathematical problem
In commutative algebra, an element b of a commutative ring B is said to be integral over a subring A of B if b is a root of some monic polynomial over A. [1]If A, B are fields, then the notions of "integral over" and of an "integral extension" are precisely "algebraic over" and "algebraic extensions" in field theory (since the root of any polynomial is the root of a monic polynomial).
The "logarithmic integral" as such is always the integral that starts at 0, with Cauchy principal value. We can even use this version in the prime number theorem; it is slighly more accurate than using the integral that starts at 2. 2// If a function is non elemental - isn't this important?
The following is a list of integrals (antiderivative functions) of irrational functions. For a complete list of integral functions, see lists of integrals. Throughout this article the constant of integration is omitted for brevity.
Get the latest news, politics, sports, and weather updates on AOL.com.
In mathematics, the definite integral ∫ a b f ( x ) d x {\displaystyle \int _{a}^{b}f(x)\,dx} is the area of the region in the xy -plane bounded by the graph of f , the x -axis, and the lines x = a and x = b , such that area above the x -axis adds to the total, and that below the x -axis subtracts from the total.