When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    This is one form of the Gibbs fundamental equation. [10] In the infinitesimal expression, the term involving the chemical potential accounts for changes in Gibbs free energy resulting from an influx or outflux of particles. In other words, it holds for an open system or for a closed, chemically reacting system where the N i are changing. For a ...

  3. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    This equation quickly enables the calculation of the Gibbs free energy change for a chemical reaction at any temperature T 2 with knowledge of just the standard Gibbs free energy change of formation and the standard enthalpy change of formation for the individual components. Also, using the reaction isotherm equation, [8] that is

  4. Thermochemical equation - Wikipedia

    en.wikipedia.org/wiki/Thermochemical_equation

    In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings. One such equation involves the enthalpy change, which is denoted with Δ H {\displaystyle \Delta H} In variable form, a thermochemical equation would appear similar to the following:

  5. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    Thus, they are essentially equations of state, and using the fundamental equations, experimental data can be used to determine sought-after quantities like G (Gibbs free energy) or H . [1] The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy , and volume for a closed system in ...

  6. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    Therefore, only relative free energy values, or changes in free energy, are physically meaningful. The free energy is the portion of any first-law energy that is available to perform thermodynamic work at constant temperature, i.e., work mediated by thermal energy. Free energy is subject to irreversible loss in the course of such work. [1]

  7. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Each pair in the equation are known as a conjugate pair with respect to the internal energy. The intensive variables may be viewed as a generalized "force". An imbalance in the intensive variable will cause a "flow" of the extensive variable in a direction to counter the imbalance. The equation may be seen as a particular case of the chain rule.

  8. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    The total free energy change of a reaction is independent of the activation energy however. Physical and chemical reactions can be either exergonic or endergonic, but the activation energy is not related to the spontaneity of a reaction. The overall reaction energy change is not altered by the activation energy.

  9. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature . The change in the Helmholtz energy during a process is equal to the maximum amount of work that the system can perform in a thermodynamic process ...