When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    Other NMR-active nuclei can also cause these satellites, but carbon is most common culprit in the proton NMR spectra of organic compounds. Sometimes other peaks can be seen around 1 H peaks, known as spinning sidebands and are related to the rate of spin of an NMR tube. These are experimental artifacts from the spectroscopic analysis itself ...

  3. Shoolery's rule - Wikipedia

    en.wikipedia.org/wiki/Shoolery's_rule

    Shoolery's rule, which is named after James Nelson Shoolery, is a good approximation of the chemical shift δ of methylene groups in proton nuclear magnetic resonance.We can calculate shift of the CH 2 protons in a A–CH 2 –B structure using the formula

  4. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    To be NMR-active, a nucleus must have a non-zero nuclear spin (I ≠ 0). [8] It is this non-zero spin that enables nuclei to interact with external magnetic fields and show signals in NMR. Atoms with an odd sum of protons and neutrons exhibit half-integer values for the nuclear spin quantum number (I = 1/2, 3/2, 5/2, and so on). These atoms are ...

  5. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not 0, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  6. Nuclear magnetic resonance decoupling - Wikipedia

    en.wikipedia.org/wiki/Nuclear_Magnetic_Resonance...

    Nuclear magnetic resonance decoupling (NMR decoupling for short) is a special method used in nuclear magnetic resonance (NMR) spectroscopy where a sample to be analyzed is irradiated at a certain frequency or frequency range to eliminate or partially the effect of coupling between certain nuclei. NMR coupling refers to the effect of nuclei on ...

  7. Magnetic inequivalence - Wikipedia

    en.wikipedia.org/wiki/Magnetic_inequivalence

    In the context of nuclear magnetic resonance (NMR), the term magnetic inequivalence refers to the distinction between magnetically active nuclear spins by their NMR signals, owing to a difference in either chemical shift (magnetic inequivalence by the chemical shift criterion) or spin–spin coupling (magnetic inequivalence by the coupling criterion).

  8. Chemical shift - Wikipedia

    en.wikipedia.org/wiki/Chemical_shift

    In proton NMR of methyl halides (CH 3 X) the chemical shift of the methyl protons increase in the order I < Br < Cl < F from 2.16 ppm to 4.26 ppm reflecting this trend. In carbon NMR the chemical shift of the carbon nuclei increase in the same order from around −10 ppm to 70 ppm. Also when the electronegative atom is removed further away the ...

  9. Nuclear magnetic resonance crystallography - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Nuclear magnetic resonance crystallography (NMR crystallography) is a method which utilizes primarily NMR spectroscopy to determine the structure of solid materials on the atomic scale. Thus, solid-state NMR spectroscopy would be used primarily, possibly supplemented by quantum chemistry calculations (e.g. density functional theory ), [ 1 ...