Ads
related to: how does rna seq work in research design
Search results
Results From The WOW.Com Content Network
RNA-Seq (named as an abbreviation of RNA sequencing) is a technique that uses next-generation sequencing to reveal the presence and quantity of RNA molecules in a biological sample, providing a snapshot of gene expression in the sample, also known as transcriptome. [2] [3]
RNA-Seq [1] [2] [3] is a technique [4] that allows transcriptome studies (see also Transcriptomics technologies) based on next-generation sequencing technologies. This technique is largely dependent on bioinformatics tools developed to support the different steps of the process.
The earliest RNA-Seq work was published in 2006 with one hundred thousand transcripts sequenced using 454 technology. [40] This was sufficient coverage to quantify relative transcript abundance. RNA-Seq began to increase in popularity after 2008 when new Solexa/Illumina technologies allowed one billion transcript sequences to be recorded.
For example, to investigate a biological process which is estimated to occur for an hour, a researcher might design an experiment where the process is triggered for five minutes, 15 minutes, 30 minutes, 45 minutes, one hour, and two hours in separate cell culture samples before harvesting the cells for RNA-seq analysis.
Rapid amplification of cDNA ends (RACE) is a technique used in molecular biology to obtain the full length sequence of an RNA transcript found within a cell. RACE results in the production of a cDNA copy of the RNA sequence of interest, produced through reverse transcription, followed by PCR amplification of the cDNA copies (see RT-PCR).
RNA Seq Experiment. The single-cell RNA-seq technique converts a population of RNAs to a library of cDNA fragments. These fragments are sequenced by high-throughput next generation sequencing techniques and the reads are mapped back to the reference genome, providing a count of the number of reads associated with each gene. [13]
Ribosome profiling, or Ribo-Seq (also named ribosome footprinting), is an adaptation of a technique developed by Joan Steitz and Marilyn Kozak almost 50 years ago that Nicholas Ingolia and Jonathan Weissman adapted to work with next generation sequencing that uses specialized messenger RNA sequencing to determine which mRNAs are being actively translated.
3' mRNA-seq is a quantitative, genome-wide transcriptomic technique based on the barcoding of the 3' untranslated region (UTR) of mRNA molecules. Unlike standard bulk RNA-seq, where short sequencing reads are generated along the entire length of mRNA transcripts, only the 3' end of polyadenylated RNAs are sequenced in 3' mRNA-seq.